smtplib — SMTP protocol client¶
Source code: Lib/smtplib.py
The smtplib module defines an SMTP client session object that can be used
to send mail to any internet machine with an SMTP or ESMTP listener daemon.  For
details of SMTP and ESMTP operation, consult RFC 821 (Simple Mail Transfer
Protocol) and RFC 1869 (SMTP Service Extensions).
Availability: not WASI.
This module does not work or is not available on WebAssembly. See WebAssembly platforms for more information.
- class smtplib.SMTP(host='', port=0, local_hostname=None, [timeout, ]source_address=None)¶
- An - SMTPinstance encapsulates an SMTP connection. It has methods that support a full repertoire of SMTP and ESMTP operations. If the optional host and port parameters are given, the SMTP- connect()method is called with those parameters during initialization. If specified, local_hostname is used as the FQDN of the local host in the HELO/EHLO command. Otherwise, the local hostname is found using- socket.getfqdn(). If the- connect()call returns anything other than a success code, an- SMTPConnectErroris raised. The optional timeout parameter specifies a timeout in seconds for blocking operations like the connection attempt (if not specified, the global default timeout setting will be used). If the timeout expires,- TimeoutErroris raised. The optional source_address parameter allows binding to some specific source address in a machine with multiple network interfaces, and/or to some specific source TCP port. It takes a 2-tuple- (host, port), for the socket to bind to as its source address before connecting. If omitted (or if host or port are- ''and/or- 0respectively) the OS default behavior will be used.- For normal use, you should only require the initialization/connect, - sendmail(), and- SMTP.quit()methods. An example is included below.- The - SMTPclass supports the- withstatement. When used like this, the SMTP- QUITcommand is issued automatically when the- withstatement exits. E.g.:- >>> from smtplib import SMTP >>> with SMTP("domain.org") as smtp: ... smtp.noop() ... (250, b'Ok') >>> - All commands will raise an auditing event - smtplib.SMTP.sendwith arguments- selfand- data, where- datais the bytes about to be sent to the remote host.- Changed in version 3.3: Support for the - withstatement was added.- Changed in version 3.3: source_address argument was added. - Added in version 3.5: The SMTPUTF8 extension (RFC 6531) is now supported. - Changed in version 3.9: If the timeout parameter is set to be zero, it will raise a - ValueErrorto prevent the creation of a non-blocking socket.
- class smtplib.SMTP_SSL(host='', port=0, local_hostname=None, *, [timeout, ]context=None, source_address=None)¶
- An - SMTP_SSLinstance behaves exactly the same as instances of- SMTP.- SMTP_SSLshould be used for situations where SSL is required from the beginning of the connection and using- starttls()is not appropriate. If host is not specified, the local host is used. If port is zero, the standard SMTP-over-SSL port (465) is used. The optional arguments local_hostname, timeout and source_address have the same meaning as they do in the- SMTPclass. context, also optional, can contain a- SSLContextand allows configuring various aspects of the secure connection. Please read Security considerations for best practices.- Changed in version 3.3: context was added. - Changed in version 3.3: The source_address argument was added. - Changed in version 3.4: The class now supports hostname check with - ssl.SSLContext.check_hostnameand Server Name Indication (see- ssl.HAS_SNI).- Changed in version 3.9: If the timeout parameter is set to be zero, it will raise a - ValueErrorto prevent the creation of a non-blocking socket- Changed in version 3.12: The deprecated keyfile and certfile parameters have been removed. 
- class smtplib.LMTP(host='', port=LMTP_PORT, local_hostname=None, source_address=None[, timeout])¶
- The LMTP protocol, which is very similar to ESMTP, is heavily based on the standard SMTP client. It’s common to use Unix sockets for LMTP, so our - connect()method must support that as well as a regular host:port server. The optional arguments local_hostname and source_address have the same meaning as they do in the- SMTPclass. To specify a Unix socket, you must use an absolute path for host, starting with a ‘/’.- Authentication is supported, using the regular SMTP mechanism. When using a Unix socket, LMTP generally don’t support or require any authentication, but your mileage might vary. - Changed in version 3.9: The optional timeout parameter was added. 
A nice selection of exceptions is defined as well:
- exception smtplib.SMTPException¶
- Subclass of - OSErrorthat is the base exception class for all the other exceptions provided by this module.- Changed in version 3.4: SMTPException became subclass of - OSError
- exception smtplib.SMTPServerDisconnected¶
- This exception is raised when the server unexpectedly disconnects, or when an attempt is made to use the - SMTPinstance before connecting it to a server.
- exception smtplib.SMTPResponseException¶
- Base class for all exceptions that include an SMTP error code. These exceptions are generated in some instances when the SMTP server returns an error code. The error code is stored in the - smtp_codeattribute of the error, and the- smtp_errorattribute is set to the error message.
- exception smtplib.SMTPSenderRefused¶
- Sender address refused. In addition to the attributes set by on all - SMTPResponseExceptionexceptions, this sets ‘sender’ to the string that the SMTP server refused.
- exception smtplib.SMTPRecipientsRefused¶
- All recipient addresses refused. The errors for each recipient are accessible through the attribute - recipients, which is a dictionary of exactly the same sort as- SMTP.sendmail()returns.
- exception smtplib.SMTPDataError¶
- The SMTP server refused to accept the message data. 
- exception smtplib.SMTPConnectError¶
- Error occurred during establishment of a connection with the server. 
- exception smtplib.SMTPHeloError¶
- The server refused our - HELOmessage.
- exception smtplib.SMTPNotSupportedError¶
- The command or option attempted is not supported by the server. - Added in version 3.5. 
- exception smtplib.SMTPAuthenticationError¶
- SMTP authentication went wrong. Most probably the server didn’t accept the username/password combination provided. 
See also
- RFC 821 - Simple Mail Transfer Protocol
- Protocol definition for SMTP. This document covers the model, operating procedure, and protocol details for SMTP. 
- RFC 1869 - SMTP Service Extensions
- Definition of the ESMTP extensions for SMTP. This describes a framework for extending SMTP with new commands, supporting dynamic discovery of the commands provided by the server, and defines a few additional commands. 
SMTP Objects¶
An SMTP instance has the following methods:
- SMTP.set_debuglevel(level)¶
- Set the debug output level. A value of 1 or - Truefor level results in debug messages for connection and for all messages sent to and received from the server. A value of 2 for level results in these messages being timestamped.- Changed in version 3.5: Added debuglevel 2. 
- SMTP.docmd(cmd, args='')¶
- Send a command cmd to the server. The optional argument args is simply concatenated to the command, separated by a space. - This returns a 2-tuple composed of a numeric response code and the actual response line (multiline responses are joined into one long line.) - In normal operation it should not be necessary to call this method explicitly. It is used to implement other methods and may be useful for testing private extensions. - If the connection to the server is lost while waiting for the reply, - SMTPServerDisconnectedwill be raised.
- SMTP.connect(host='localhost', port=0)¶
- Connect to a host on a given port. The defaults are to connect to the local host at the standard SMTP port (25). If the hostname ends with a colon ( - ':') followed by a number, that suffix will be stripped off and the number interpreted as the port number to use. This method is automatically invoked by the constructor if a host is specified during instantiation. Returns a 2-tuple of the response code and message sent by the server in its connection response.- Raises an auditing event - smtplib.connectwith arguments- self,- host,- port.
- SMTP.helo(name='')¶
- Identify yourself to the SMTP server using - HELO. The hostname argument defaults to the fully qualified domain name of the local host. The message returned by the server is stored as the- helo_respattribute of the object.- In normal operation it should not be necessary to call this method explicitly. It will be implicitly called by the - sendmail()when necessary.
- SMTP.ehlo(name='')¶
- Identify yourself to an ESMTP server using - EHLO. The hostname argument defaults to the fully qualified domain name of the local host. Examine the response for ESMTP option and store them for use by- has_extn(). Also sets several informational attributes: the message returned by the server is stored as the- ehlo_respattribute,- does_esmtpis set to- Trueor- Falsedepending on whether the server supports ESMTP, and- esmtp_featureswill be a dictionary containing the names of the SMTP service extensions this server supports, and their parameters (if any).- Unless you wish to use - has_extn()before sending mail, it should not be necessary to call this method explicitly. It will be implicitly called by- sendmail()when necessary.
- SMTP.ehlo_or_helo_if_needed()¶
- This method calls - ehlo()and/or- helo()if there has been no previous- EHLOor- HELOcommand this session. It tries ESMTP- EHLOfirst.- SMTPHeloError
- The server didn’t reply properly to the - HELOgreeting.
 
- SMTP.has_extn(name)¶
- Return - Trueif name is in the set of SMTP service extensions returned by the server,- Falseotherwise. Case is ignored.
- SMTP.verify(address)¶
- Check the validity of an address on this server using SMTP - VRFY. Returns a tuple consisting of code 250 and a full RFC 822 address (including human name) if the user address is valid. Otherwise returns an SMTP error code of 400 or greater and an error string.- Note - Many sites disable SMTP - VRFYin order to foil spammers.
- SMTP.login(user, password, *, initial_response_ok=True)¶
- Log in on an SMTP server that requires authentication. The arguments are the username and the password to authenticate with. If there has been no previous - EHLOor- HELOcommand this session, this method tries ESMTP- EHLOfirst. This method will return normally if the authentication was successful, or may raise the following exceptions:- SMTPHeloError
- The server didn’t reply properly to the - HELOgreeting.
- SMTPAuthenticationError
- The server didn’t accept the username/password combination. 
- SMTPNotSupportedError
- The - AUTHcommand is not supported by the server.
- SMTPException
- No suitable authentication method was found. 
 - Each of the authentication methods supported by - smtplibare tried in turn if they are advertised as supported by the server. See- auth()for a list of supported authentication methods. initial_response_ok is passed through to- auth().- Optional keyword argument initial_response_ok specifies whether, for authentication methods that support it, an “initial response” as specified in RFC 4954 can be sent along with the - AUTHcommand, rather than requiring a challenge/response.- Changed in version 3.5: - SMTPNotSupportedErrormay be raised, and the initial_response_ok parameter was added.
- SMTP.auth(mechanism, authobject, *, initial_response_ok=True)¶
- Issue an - SMTP- AUTHcommand for the specified authentication mechanism, and handle the challenge response via authobject.- mechanism specifies which authentication mechanism is to be used as argument to the - AUTHcommand; the valid values are those listed in the- authelement of- esmtp_features.- authobject must be a callable object taking an optional single argument: - data = authobject(challenge=None) - If optional keyword argument initial_response_ok is true, - authobject()will be called first with no argument. It can return the RFC 4954 “initial response” ASCII- strwhich will be encoded and sent with the- AUTHcommand as below. If the- authobject()does not support an initial response (e.g. because it requires a challenge), it should return- Nonewhen called with- challenge=None. If initial_response_ok is false, then- authobject()will not be called first with- None.- If the initial response check returns - None, or if initial_response_ok is false,- authobject()will be called to process the server’s challenge response; the challenge argument it is passed will be a- bytes. It should return ASCII- strdata that will be base64 encoded and sent to the server.- The - SMTPclass provides- authobjectsfor the- CRAM-MD5,- PLAIN, and- LOGINmechanisms; they are named- SMTP.auth_cram_md5,- SMTP.auth_plain, and- SMTP.auth_loginrespectively. They all require that the- userand- passwordproperties of the- SMTPinstance are set to appropriate values.- User code does not normally need to call - authdirectly, but can instead call the- login()method, which will try each of the above mechanisms in turn, in the order listed.- authis exposed to facilitate the implementation of authentication methods not (or not yet) supported directly by- smtplib.- Added in version 3.5. 
- SMTP.starttls(*, context=None)¶
- Put the SMTP connection in TLS (Transport Layer Security) mode. All SMTP commands that follow will be encrypted. You should then call - ehlo()again.- If keyfile and certfile are provided, they are used to create an - ssl.SSLContext.- Optional context parameter is an - ssl.SSLContextobject; This is an alternative to using a keyfile and a certfile and if specified both keyfile and certfile should be- None.- If there has been no previous - EHLOor- HELOcommand this session, this method tries ESMTP- EHLOfirst.- Changed in version 3.12: The deprecated keyfile and certfile parameters have been removed. - SMTPHeloError
- The server didn’t reply properly to the - HELOgreeting.
- SMTPNotSupportedError
- The server does not support the STARTTLS extension. 
- RuntimeError
- SSL/TLS support is not available to your Python interpreter. 
 - Changed in version 3.3: context was added. - Changed in version 3.4: The method now supports hostname check with - SSLContext.check_hostnameand Server Name Indicator (see- HAS_SNI).- Changed in version 3.5: The error raised for lack of STARTTLS support is now the - SMTPNotSupportedErrorsubclass instead of the base- SMTPException.
- SMTP.sendmail(from_addr, to_addrs, msg, mail_options=(), rcpt_options=())¶
- Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-address strings (a bare string will be treated as a list with 1 address), and a message string. The caller may pass a list of ESMTP options (such as - 8bitmime) to be used in- MAIL FROMcommands as mail_options. ESMTP options (such as- DSNcommands) that should be used with all- RCPTcommands can be passed as rcpt_options. (If you need to use different ESMTP options to different recipients you have to use the low-level methods such as- mail(),- rcpt()and- data()to send the message.)- Note - The from_addr and to_addrs parameters are used to construct the message envelope used by the transport agents. - sendmaildoes not modify the message headers in any way.- msg may be a string containing characters in the ASCII range, or a byte string. A string is encoded to bytes using the ascii codec, and lone - \rand- \ncharacters are converted to- \r\ncharacters. A byte string is not modified.- If there has been no previous - EHLOor- HELOcommand this session, this method tries ESMTP- EHLOfirst. If the server does ESMTP, message size and each of the specified options will be passed to it (if the option is in the feature set the server advertises). If- EHLOfails,- HELOwill be tried and ESMTP options suppressed.- This method will return normally if the mail is accepted for at least one recipient. Otherwise it will raise an exception. That is, if this method does not raise an exception, then someone should get your mail. If this method does not raise an exception, it returns a dictionary, with one entry for each recipient that was refused. Each entry contains a tuple of the SMTP error code and the accompanying error message sent by the server. - If - SMTPUTF8is included in mail_options, and the server supports it, from_addr and to_addrs may contain non-ASCII characters.- This method may raise the following exceptions: - SMTPRecipientsRefused
- All recipients were refused. Nobody got the mail. The - recipientsattribute of the exception object is a dictionary with information about the refused recipients (like the one returned when at least one recipient was accepted).
- SMTPHeloError
- The server didn’t reply properly to the - HELOgreeting.
- SMTPSenderRefused
- The server didn’t accept the from_addr. 
- SMTPDataError
- The server replied with an unexpected error code (other than a refusal of a recipient). 
- SMTPNotSupportedError
- SMTPUTF8was given in the mail_options but is not supported by the server.
 - Unless otherwise noted, the connection will be open even after an exception is raised. - Changed in version 3.2: msg may be a byte string. - Changed in version 3.5: - SMTPUTF8support added, and- SMTPNotSupportedErrormay be raised if- SMTPUTF8is specified but the server does not support it.
- SMTP.send_message(msg, from_addr=None, to_addrs=None, mail_options=(), rcpt_options=())¶
- This is a convenience method for calling - sendmail()with the message represented by an- email.message.Messageobject. The arguments have the same meaning as for- sendmail(), except that msg is a- Messageobject.- If from_addr is - Noneor to_addrs is- None,- send_messagefills those arguments with addresses extracted from the headers of msg as specified in RFC 5322: from_addr is set to the Sender field if it is present, and otherwise to the From field. to_addrs combines the values (if any) of the To, Cc, and Bcc fields from msg. If exactly one set of Resent-* headers appear in the message, the regular headers are ignored and the Resent-* headers are used instead. If the message contains more than one set of Resent-* headers, a- ValueErroris raised, since there is no way to unambiguously detect the most recent set of Resent- headers.- send_messageserializes msg using- BytesGeneratorwith- \r\nas the linesep, and calls- sendmail()to transmit the resulting message. Regardless of the values of from_addr and to_addrs,- send_messagedoes not transmit any Bcc or Resent-Bcc headers that may appear in msg. If any of the addresses in from_addr and to_addrs contain non-ASCII characters and the server does not advertise- SMTPUTF8support, an- SMTPNotSupportedErroris raised. Otherwise the- Messageis serialized with a clone of its- policywith the- utf8attribute set to- True, and- SMTPUTF8and- BODY=8BITMIMEare added to mail_options.- Added in version 3.2. - Added in version 3.5: Support for internationalized addresses ( - SMTPUTF8).
- SMTP.quit()¶
- Terminate the SMTP session and close the connection. Return the result of the SMTP - QUITcommand.
Low-level methods corresponding to the standard SMTP/ESMTP commands HELP,
RSET, NOOP, MAIL, RCPT, and DATA are also supported.
Normally these do not need to be called directly, so they are not documented
here.  For details, consult the module code.
SMTP Example¶
This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses), and the message to be delivered. Note that the headers to be included with the message must be included in the message as entered; this example doesn’t do any processing of the RFC 822 headers. In particular, the ‘To’ and ‘From’ addresses must be included in the message headers explicitly:
import smtplib
def prompt(title):
    return input(title).strip()
from_addr = prompt("From: ")
to_addrs  = prompt("To: ").split()
print("Enter message, end with ^D (Unix) or ^Z (Windows):")
# Add the From: and To: headers at the start!
lines = [f"From: {from_addr}", f"To: {', '.join(to_addrs)}", ""]
while True:
    try:
        line = input()
    except EOFError:
        break
    else:
        lines.append(line)
msg = "\r\n".join(lines)
print("Message length is", len(msg))
server = smtplib.SMTP("localhost")
server.set_debuglevel(1)
server.sendmail(from_addr, to_addrs, msg)
server.quit()
Note
In general, you will want to use the email package’s features to
construct an email message, which you can then send
via send_message(); see email: Examples.